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Abstract. We present a study of an extended (35-power) low-temperature series for the 
susceptibility of the ordinary two-site three-state Potts model on the square lattice as well 
as reanalyses of several extant series for the three-site three-state Potts model on the 
triangular lattice. Dominant and confluent singularities are investigated and the exponents 
of both are found to be universal and in agreement with known and conjectured exact 
values. 

In a recent series of papers (Adler et a1 1982a, b, 1983) a new method of Pad6 analysis 
that explicitly accounts for confluent corrections to scaling has been developed. This 
method has been applied to the ordinary two-site three-state Potts model (Wu 1982) 
on the square lattice by Adler and Privman (1982, hereafter denoted as AP), For 
both the magnetisation (M) and the internal energy (E) partition function series of 
Enting (1980b, 1982, see table 2) the hypothesis of critical behaviour of the forms 
(U = exp(-J/kT)) 

(1) 

(2) 

respectively has led to values of the dominant exponents /3 and a that are in agreement 
with known and conjectured exact (Wu 1982) results. See table 1 for details. The 
leading confluent exponent A1 was found to be the same for both quantities, as 
predicted by universality (Wegner 1972). Similar p and a and A1 estimates were 
found for the Hamiltonian series (Pearson 1980, 1982); however, the convergence of 
the y range, namely y = 1.449k0.027, where y is the critical exponent of the 
susceptibility x, 

(3) 
is relatively wide due to the shortness of the series. Even so, this estimate is a 
substantial improvement when compared with ordinary Pad6 or with the high- 
temperature series estimate of Miyashita et a1 (1979) of y=1.50  from a short 
(ll-power) series without allowance for a confluent correction term. Previous to the 
analysis of AP, all the analyses of partition function series for the three-state Potts 
models had been problematical, and in particular the 18-power series of Enting (1980~)  
for the three-state three-site .nodel on the triangular lattice appeared to exhibit slow 

M - (Uc- u ) q 1  + u l M ( U c -  U ) A ' +  b l M ( U c -  U )  +. . .I, 
E - (u,-u)'-"[l + C Z ~ E ( U , - U ) * '  + b 1 E ( U c -  U)+. . .I, 

x = f ( u )  - (uc-u)-'[l + u l , ( u , - u ) A ' + b l , ( U , - U )  +. . .], 
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Table 1. Estimates of critical exponents. 

Exponent CY P Y 

Exact value 
(known or conjectured) 

Series results 
Partition function (two-site) 
A =  1 1-0.37 
A # 1 , 6 = 0  0.348i0.008 

A # l , b # O  

1/3  = 0.333.. . 

A1 = 0.56* 0.14 

1 /9  = 0.1 11 1 . , . 13/9 = 1.444 . . . 

<0.110 1 1.47 
0.1 110i0.0007 
A1=0.63*0.19 

1.43i0.04 

blcxlu4 ,  = 2.2i0.8 
b l M  =-(0.1+0.2) A1=0.5O*O.24 

Hamiltonian (two-site) 
A =  1 1-0.31 
A # l , b = O  0.331 i0 .009 

A # 1 . 6 # 0  
0.65k0.12 

Partition function (rhree-site) 
A = l  ==0.42 
A #  l , b  = O  0.343 *0.020 

A #  1.6 f O  
A1 =0.4*0.2 

~ 0 . 1 0 9 0  31.49 
0.11 11 f 0.0006 
A1=0.54*0.14 A1=0.53i0.18 
0.1113 i0.0012 

1.449 * 0.027 

A i  =0.54*0.12 
blM=-(O.1+0.2) 

=0.1105 

0.1111 i0.0019 
A1 = 0.57 * 0.05 
b l M  1-4.5 

convergence to the dominant exponents of the hard hexagon model (Baxter 1980), 
that Alexander (1975) suggested should lie in the three-state Potts model universality 
class. These exponents have since been conjectured (and partly proved) to apply to 
the three-state Potts model (Wu 1982 and references therein), but the correspondence 
between hard hexagon and Potts models does not seem to extend to corrections to 
scaling. 

In the present work we study a new low-temperature partition function susceptibil- 
ity series for the ordinary two-site three-state Potts model and reanalyse the extant 
three-site series; we demonstrate the universality of both the dominant and the 
confluent critical exponents, and show that the convergence of the dominant exponent 
is improved in all cases. 

The low-temperature series were calculated using the techniques described by 
Enting (1978), with the partition function being constructed as a product of positive 
and negative powers of the partition functions of small finite lattices with fixed 
(spin-state 0) boundaries. The finite lattice partition functions are calculated by using 
a transfer matrix that adds one site at a time in the manner described by Enting 
(1980a). This computational refinement has made it possible to extend the series 
given by Enting (1980b) from u31 to u 3 5  in the temperature variable U and from x 1  
to x 2  in the field variable x = 1 -exp(-H/kT). The extension to x 2  enables us to 
calculate series for the zero-field susceptibility. 

For finite lattices of width < w ,  the Potts model series can be obtained to order 
4w + 3  in U .  The state vectors on which the transfer matrices act are formally of 
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dimension 3", but the symmetry between the 1 and 2 states means that only n,  of 
the components are distinct, where n,  = 3n,-1- 1 and n l  = 2. The use of the single-site 
transfer matrices means that the spatial reflection symmetry that would be present in 
a row-to-row formalism is lost, and so it is necessary to store the full ns = 3281 
components of each of two vectors. (The elements of the transfer matrices are defined 
implicitly in a manner similar to that described by Enting (1978) and so no storage 
is required for the matrices.) The integer coefficients were calculated using the 
arithmetic of residues modulo the primes pi = 215 - 19, 215 -49, 215 - 51 and 215 - 5 5 .  
This means that the final calculation is correct modulo P = 114=1 p .  The regular 
behaviour of the coefficients indicates that four primes are sufficient to define the 
series given in table 2. 

Table 2. New coefficients of the low-temperature series expansions Z = P, a,u", 1 - M  = 
Z, b,un, ,y = Pn c,un, for the two-site model. The coefficients a, and 6 .  for n s 31 appear 
in Enting (1980a). 

n C, n a.  b, C" 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0 
0 
0 
0 
2 
0 

16 
16 

100 
216 
844 

1552 
7 844 

12 112 
60 268 

15 118 944 
16 424 072 
17 1081 392 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 48471 

3 201 728 
8 670 688 

25 713 154 
67 206 560 

203 077 760 
532 881 432 

1 558 159 918 
4250639632 

11956293152 
33 296 697 848 
92 820 406 096 

257249275776 
721023458656 

1 986 080 278 600 
5 561 045 323 298 

33 11 876 028 924 648 347 258 796 15 359 165 767 512 
34 29 820 747 120 1 713 912 378 552 42 717 426 328 784 
35 76 592 341 404 4 559 593 914 288 118 457 421 095 792 

29 499 2 6  6 24754 

The new susceptibility series for the two-site model as well as the partition function, 
magnetisation and susceptibility series for the three-site model have been analysed 
with the techniques developed by Adler et a1 (1982a, b). These techniques, which 
are discussed at length in Adler et a1 (1983), employ the Roskies (1981) map from 
U to y = 1 - (1 - U / U ~ ) ~ ~ ,  in order to suppress the influence of the non-analytic correc- 
tion term in the critical behaviour in, for example, the susceptibility. The non-analytic 
correction term which has the coefficient al, in (3) has been shown (see AP) to be 
responsible for systematic errors in earlier Pad6 analyses of Potts model series. This 
can be demonstrated by considering the Dlog Pad6 evaluation of y via 

where K(u) -X~=, ,K , ,u"  is derived from a finite number of terms in the series for 
,y(u), and taking different [L, MI Pad6 approximants to K ( u )  at U=. The non-analytic 
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terms in (4) may lead to systematic errors in the evaluation of the exponent y since 
Pad6 approximants do not generally converge in the presence of branch cuts. 

To avoid this problem, we invoke the Roskies (1981) transformation, replacing 
Ai with a variable A, and search for the region at A-Ai ,  where the non-analyticity 
of the leading confluent term will be suppressed. We study Pad& approximants to the 
function 

where g l X  = a lxTt l ,  and plot graphs of y as a function of A. When U = uc, y = 1 and 
for each [L, MI approximant we have a curve 

When A = 1, yout (A = 1) will be the result obtained from a usual Dlog Pad6 analysis 
and when A is near the correct A1 we may linearise Ga(y) in the difference A - A I  
and obtain 

G,(y) = y +Cil,(l - y )  In(1 -y)(h-Al)+.  . . 
where the corrections will now change the slopes of the curves y = y,,,(A) in the (A, 7) 
plane. If there were no analytic ( b l , )  or higher-order confluent terms all the curves 
would intersect at the correct (AI, y ) ;  these other corrections smear the conver- 
gence somewhat and we have an intersection region near this point. We read 
off values for the dominant exponent y and the correction exponent Ai from the 
graph using the somewhat subjective intersection region to determine error bounds 
and may compare these with the results of a usual Dlog Pad& by looking along the 
line (1,y) .  

We consider the new susceptibility series first. In figure 1, we present curves for 
the series x ( u ) / u 4  for the square lattice two-site model (where U, is known exactly 
from duality) and observe that there is a clear, but erroneous convergence at A =  1. 
The conjectured value y = 13/9 = 1.444 . . . and the A I  (series) = 0.57*0.13 from AP 
are illustrated by a bar and we can see that most of the Pad& curves cross the bar, 
although the strong analytic bl,  term apparently destroys the intersection region. The 
hypothesis that the analytic term destroys the intersection region was investigated by 
studying (Aharony 1982) k (u ) /u4 ) / [ l  + b ( u , - U ) ]  for various values of 6, and for 
b = +2.2 the convergence region near A -  1 disappears. We present the curves for 
b = +2.2 in figure 2 and from this and similar plots conclude that b1(xIu4) = 2.2k0.8.  
In these plots an apparent 'convergence' develops for a lower A and we estimate 

y = 1.43 f 0.04, Ai  = 0.50 * 0.24, 

consistent with the conjecture for y and Al(series) of AP. 
We now turn to the extant three-site triangular lattice series. These are somewhat 

shorter (18-power), but extremely interesting in view of the question of universality 
of correction to scaling terms, which does not seem to occur between two-state Potts 
and hard hexagon models. The possible universality between corrections to scaling 
for the two- and three-site Potts models was suggested by Enting ( 1 9 8 0 ~ )  on the 
grounds that in both models the usual Dlog Pad6 exponent estimates erred from the 
hard hexagon exponents in the same direction. Just as for the two-site model on the 
square lattice, uc is known exactly from duality arguments (Baxter er al 1978) and 
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Figure 1. y(A) curves for the x ( u ) / u 4  series derived 
from the susceptibility series of the two-site Potts 
model on the square lattice (table 2) obtained using 
[13, 171, [14, 161, [15, 151, [16,14], [17, 131, approximants as in figure 1. 
[13, 16j, [14, 151 and [16,13] Padt approximants. 
The bar indicates y(conj) and A,(series) for AP. 

Figure 2. ?(A) curves for the series (x(u)/u4)/[l + 
b(u , -u)]  of the two-site Potts model on the square 
lattice with b = +2.2, obtained using the same Pade 

we define the magnetisation 

susceptibility 

and energy per site E where 

E/J = U ( a z / a u ) / Z  

after Enting (1980~) where Z is the partition function. The critical value of E/J = 5 
and u c  = 5. 

The magnetisation series results are presented in figure 3. Again there is a clear 
convergence region at A - 1 and we indicate the line of conjectured p = 0.11 11 1 . . . 
and Al(series) from AP with a bar. We again attribute the lack of convergence to a 
‘strong’ b l M  term and on studying series for M/[1 +b(u , -u)]  find that the apparent 
convergence near A = 1 is weakened for 4’< -b s 6.0. When b = -4.5, the A = 1 
region nearly disappears (see figure 4 for b = -43, and we find 

1 

p =0.1111*0.0019, A = 0.57*0.05. 
It is not clear whether this b represents an estimate of b l M .  

In figure 5 we present the energy series. Here we may have two intersection 
regions for b = 0, or perhaps a single, rather wide region, since division by 1 + b(uc-  U )  
for a large range of b S 0 values does not appreciably affect the structure near A = 0.75. 
Assuming the former situation, we find 

a - 1 = -0.657 * 0.020, A1 = 0.4 f 0.2, 
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A 

Figure 3. -@(A) curves for the three-site Potts 
model on the triangular lattice derived from the M 
series of Enting (198oC) using [7, 101, [8,91, [9,81, 
[ lo,  71, [7,91, [8,8], [9,71, [7,81 and [8,71 Pad6 
approximants. The bar indicates p(conj) and 
A,(series) from AP. 

Figure 4. -@(A)  curves for the series M/[ l+  
b ( u , - U ) ]  for the three-site model on the triangular 
lattice where b = -4.5 obtained using the same Pade 
approximants as in figure 3.  

I 1 I I I Ll 
0 2  0 6  10 

A 

Figure 5. (I (A) - 1 curves for the E J J  = f -  E/J series derived from the Z series of Enting 
(1980~)  obtained using the same Pad6 approximants as in figure 3. The box assumes that 
the structure near A - 0.7 is a second convergence region; this may not be so. 

which is a large improvement on the usual Dlog Pad6 value of a - 1 > -0.6. We also 
studied a x ( u ) / u 3  series for this model, but for input J b l s 6  the only intersection 
region was at A - 1, although results consistent with r(conj) and Al(series) were found. 

On comparison of figures 3 and 5 (this paper) with figures 2 and 3, and 5 ,  
respectively, of AP we observe a strong universality in the overall tendencies. This 
comparison is rather stronger when we compare figures 3 and 5 with our unpublished 
analyses of shorter magnetisation and energy partition function series for the two-site 
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model. From the estimates of AI and these patterns we can confirm Enting’s ( 1 9 8 0 ~ )  
suggested universality of correction to scaling effects for their two models, but we 
must caution that, just as neglect of the a l  terms in both models led to similar errors 
in evaluating dominant exponents, we should be aware of the possibility of similar 
systematic errors in the AI estimates in both models. In particular, in both the three-site 
magnetisation partition function series (figures 3 and 4 above) and the usual two-state 
magnetisation Hamiltonian (Pearson 1980, 1982) series presented in figures 3 and 4 
of AP, we observe that division by a 1 + b (U, - U )  term tends to sharpen the A I  estimate. 
We feel this may be spurious, and note that large uncertainties in confluent exponent 
series estimates appear to be usual (Adler et a1 1982a, b, 1983, Chen et a1 1982). 

The results of the above calculations as well as those presented in AP are summarised 
in table 1, together with some exact and conjectured results for comparison purposes. 
We can make some general conclusions about relative amplitudes of confluent correc- 
tion terms in these models, for example the ratio of the amplitude of the analytic 
term to that of the non-analytic term appears to be >>1 for susceptibility series, -1 
for magnetisation series and << 1 for internal energy series. 

Overall agreement between our dominant and confluent exponent estimates is 
seen to be excellent and the universality of both for Potts models is clearly established. 
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